

Proposed Webinars

Webinar #	Date	Topic	
Webinar 1	21-Oct-24	Understanding sources of lead exposure	
Webinar 2	25-Nov-24	Carrying out a Blood Lead Level survey	
Webinar 3	27-Jan-25	Conducting an environmental risk assessment	
Webinar 4	24-Feb-25	Developing country strategies on lead exposure	
Webinar 5	31-Mar-25	Communicating on childhood lead poisoning	
Webinar 6	28-Apr-25	Developing Health Systems capacity on lead poisoning	
Webinar 7	26-May-25	Building lead surveillance system	
Webinar 8	30-Jun-25	Regulatory frameworks	
Webinar 9	28-Jul-25	Occupational exposure	
Webinar 10	29-Sep-25	Developing environmental ministry capacity	
Webinar 11	20-Oct-25	Used Lead Acid Batteries	
Webinar 12	24-Nov-25	Remediation	

Today's Speakers

Youth ambassador Zeineldin Elmikaty, 5th year Egyptian Medical Student

Larah Ortega-Ibañez, Country Director, Philippines for Pure Earth

Dr. Casey Bartrem,
Executive Director and
Senior Environmental
Scientist at
TerraGraphics
International
Foundation (TIFO),

Lead Exposure in Egypt: A Crisis

Zeineldin Elmikaty

5th Year Medical Student and IFMSA Public Health International Team Member

Lead Exposure Stories from Alexandria's University Hospital

Lead Exposure: Children Working

Lead Exposure: Industrial Areas & Manshyet Naser

Lead Exposure: Urban Cities and High-traffic Areas

The Role of IFMSA and Youth Advocacy

A world in which all medical students unite for global health, and are equipped with the knowledge, skills and values to take on health leadership roles locally and globally.

For further inquiries, please contact us at email@ifmsa.org

- ifmsa.org
- mailing lists
- facebook.com/ifmsa
- linkedin.com/company/ifmsa
- issuu.com/ifmsa
- @ifmsa
- @youifmsa
- @youifmsa
- @youifmsa

Lead Exposure Risk Assessment: Key Approaches and Considerations from PE PH Experience

Larah Ortega – Ibañez

Country Director, Pure Earth Philippines

larah@pureearth.org

www.pureearth.org

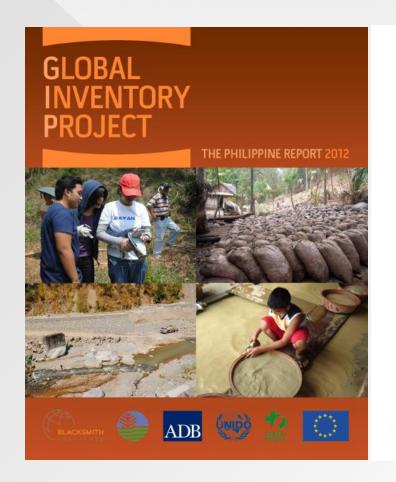
The Pure Earth Way

Collaborate

Industry
Academe
CSOs

Identify and Implement

Solutions, Sound Data
Cost-effective
Sustainable
Impact


Prioritize

Protecting health
Restoring environments
In LMICs

Key Approaches

Global Inventory Project

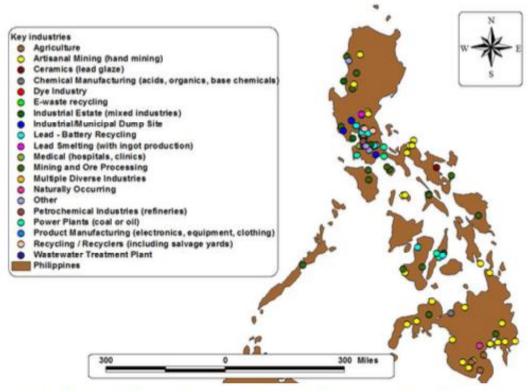


Figure 3. Key polluting industries in the GIP sites assessed in the Philippines

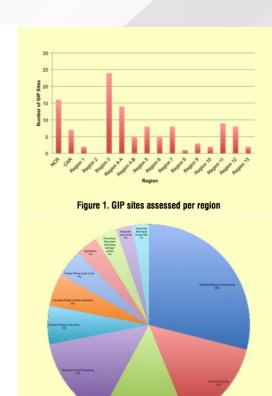
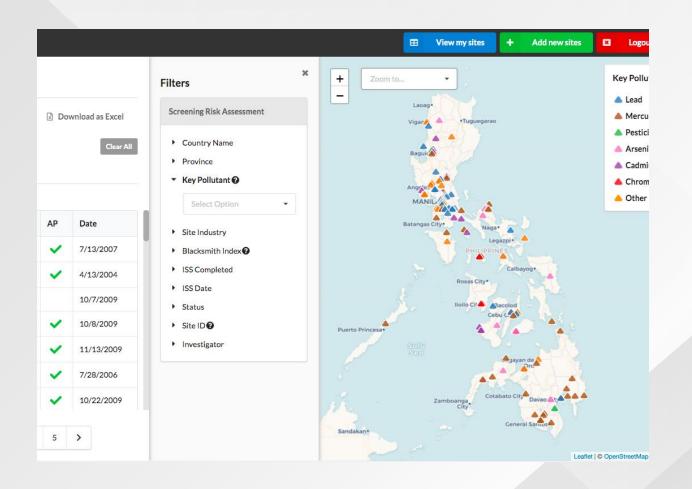
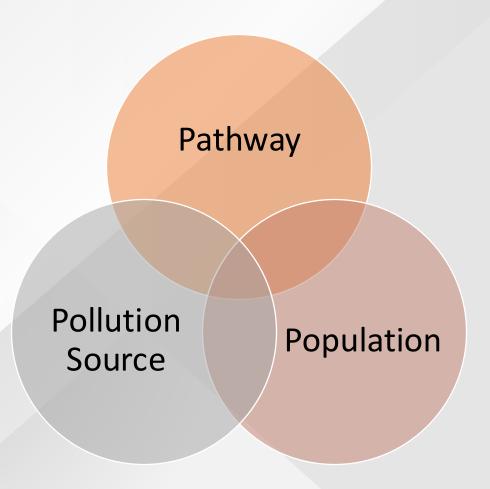
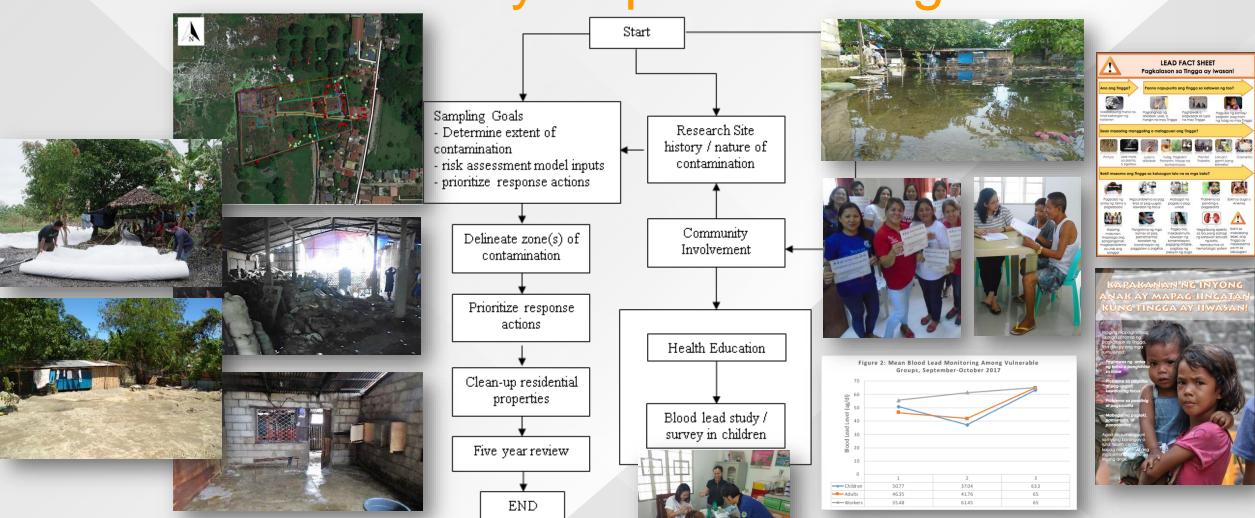




Figure 2. Key polluting industries in the GIP sites assessed in the Philippines

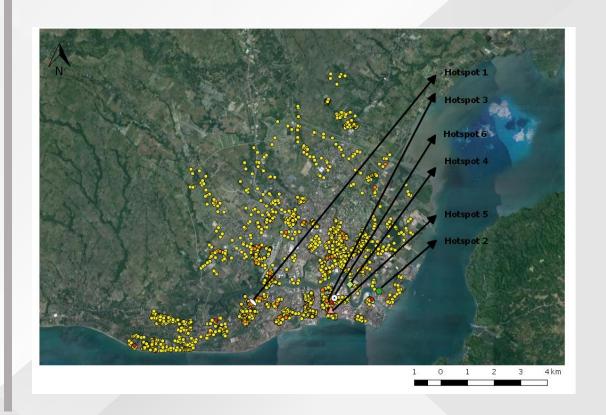
Toxic Sites Identification Program (TSIP)



TSIP Methods in the Philippines

- Targeted Site Assessment
- from <u>"point source"</u> (a fixed location, not air pollution from cars and trucks),
- with <u>concentrations</u> that can cause adverse human health impacts,
- with clear <u>migration route and</u> <u>exposure pathway to humans;</u>
- initial site assessment (ISA),
 detailed site assessment (DSA)

Community Exposure Mitigation



TSIP Methods in the Philippines

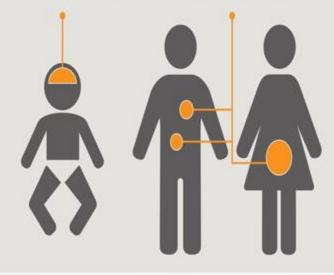
- Investigative Site Assessment
- more <u>extensive and random</u> (e.g., unbiased) sampling approach
- to <u>evaluate heavy metals</u> <u>concentrations across the cities</u>
- in an effort to understand the geographic distribution of selected heavy metals in surficial soil and
- to potentially identify sites for more targeted investigations.

Data on Lead Exposure Sources

Parameters	Previously	Recently	
Lead releasing industries	Mining, smelting and used lead acid battery (ULAB) handling and recycling industries, waste dumps, junkshops, radiator shops, etc.	No recent assessment - data may be available for registered industries - data limited or lacking for	
Lead handling establishments	282 nationwide	unregistered industries	
Lead contaminated sites	50 with lead as main pollutant	No recent assessment	
X-ray Fluorescence (XRF) reading	56,945.06 ppm on the average	 who will carry out the responsibility to do so? 	

^{*}US EPA – 200 ppm for residential/play areas, 1200 for industrial/non-play areas

Make a Stronger Case for Lead


NEGATIVE HEALTH IMPACTS OF LEAD POISONING

CHILDREN

Decreased intelligence Behavioral difficulties Learning problems

ADULTS

Cardiovascular disease Liver/kidney disease Pregnancy complications

90% of children

with high lead levels are in lowand middle-income countries.

800 MILLION CHILDREN

Lead in cookware and spices.

Informal recycling of car batteries

Lancet Planetary
Health paper
published in
2023

Children under five lost 765 million IQ points - 80% greater 5.5 million adults died from CVD due to lead exposure - 6x greater than the 2019 estimate Global financial cost of lead exposure was US\$6 trillion, more than 10% of GDP of LMICs

Policies and Standards in Place

ITEM/MEDIUM	STANDARD	SOURCE/REFERENCE			
Consumer Products					
Food	0.01 – 0.05 ppm	Philippine National Standard, Bureau of Agriculture and Fisheries Standards 194:2017			
Drinking Water	0.01 ppm	Philippine National Drinking Water Standards, 2017			
Cosmetics	20 ppm	Department of Health, Bureau of Food and Drugs, Bureau Circular 2006-012			
Children's Articles (Toys, School Supplies), Paint, Packaging Materials, Fuel Additives, Pipes	90 ppm	DAO 2013-24: Chemical Control Order for Lead and Lead Compounds			
Environment					
Water	0.01 – 0.1 mg/L	DAO-2016-08: Water Quality Guidelines and General Effluent Standards			
Air	1 – 1.5 ug/NCM	National Ambient Air Quality Guideline Values (NAAQGV) based on the Clean Air Act			
Soil	200 ppm play areas, 1200 non-play areas	EPA			
Blood	3.5 – 5 ug/dL	US CDC/WHO			

Previous Studies on Consumer Products

Rapid Market Screening (RMS)

Obtaining representative consumer goods samples available to the public and testing them for lead levels

Rapid Market Screening Sampling Protocol

PURE EARTH

March 2023

Table of Contents				
Market Selection and Sampling Approach				
Information and Sample Collection				
IN THE FIELD5				
A. Market-level questions				
B. Vendor-level questions6				
C. Item sample-level questions				
AT HOME9				
IMPORTANT NOTES				
Specific Sampling Guidance for Different Products				
Spices				
Ceramics/pottery 12				
Metal cookware				
Plastic kitchen items				
Traditional medicines				
Cosmetics, religious powders, and personal care products				
Paints				
Toys				
Food items				
Other				
Appendix A: Numbers of items to be sampled for each of 3 cities				
Appendix B: Number code for each item type				
Appendix C: Number code for each country				

Home-based Assessments (HBA)

Investigating potential sources of exposure within and around the home, analyzing both environmental and consumer goods for lead levels

HOME-BASED SOURCE ASSESSMENT PROTOCOL

Version: October 2023

Recent Data on Lead Exposure Sources

Products/Items	Global Rapid Market Screening (RMS) - 5000 samples, 25 countries	Local Rapid Market Screening (RMS) – 256 samples, LuzViMin	Home-based Assessments (HBA) – 21 homes, Metro Manila
Metal cookware	51%	24%	48%
	119,500 ppm	1,470 ppm	3,700 ppm
Ceramic food ware	45%	13%	25%
	397,100 ppm	1,159 ppm	205,000 ppm
Household paints	41% exceedance	16%	44%
	807,309 ppm	41,800 ppm	13,400 ppm

^{*}Chemical Control Order for Lead – 90 ppm

LEAD ENVIRONMENTAL INSPECTION PROCESS

YOUR CHILD'S TESTS
RESULTS REVEAL
ELEVATED BLOOD
LEAD LEVELS

Case management nurse asks the Lead Inspector to do a lead inspection of the child's home to determine if the home is the source of lead poisoning

If lead is found in the home then the inspector notifies the property owner and child's family member that lead has been found

Inspector also notifies the property owner about grant program

Inspector works with the contractor to approve the workplan

Inspector does a final inspection of property to determine if the hazard has been removed or abated, property is then in compliance.

Inspector

takes readings

of the home

environment

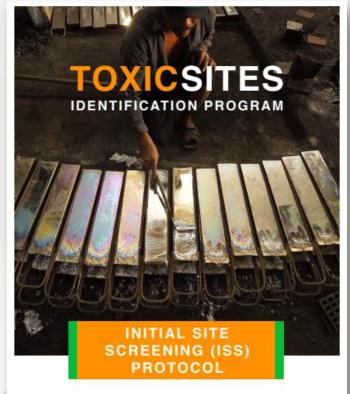
homeowner that the

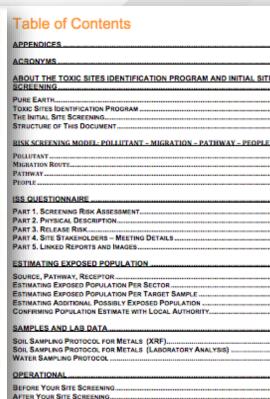
owner must have the

abated using a state

licensed contractor

home or property


home mediated or



Key Considerations

1. Protocol – viable how to

- ISA/scoping process
- Portable equipment
- Template forms
- Train tech/non-tech local personnel
- Applicable or adaptable to local contexts

REQUENTLY ASKED QUESTION

New Protocols – Source Specific

Metal Cookware Leaching Test

Protocol Document

October 2024

Protocol for Testing Metal Cookware for Lead and Other Toxic Metals

October 2024

https://www.pureearth.org/protocols-and-technical-guidelines/

2. Partners – we can't stand alone

- Investigators
- Government
- Academe
- Industry, Professionals
- Civil Society Organizations
- Local Champions,
 Community Members

3. Preparation – appropriate messaging

- Government Here to help
- Industry Help not halt
- Community
 - Assured feedback
 - Intervention if possible
 - Clear expectations
 - Care as motivation

3. Intervention – everyone contributes

- Mitigation or remediation <u>Stop the Source</u>
- Pre- and post-BLL screening <u>Show Effectiveness</u>
- Government <u>Sustain by Institutionalizing Interventions</u>
 - Policy development/amendment
 - Programming with fund allocation
- Industry <u>Process Improvement</u>
- Academe/Professionals <u>Capacity Building</u>
- Community Raise Awareness/Advocates, Create Linkages

4. Other Key Considerations

- Pilot or proof of concept
- Pro-active, and preventive in cases like ours
- People of skill and principle

Drive Action on All Fronts, The Children Deserve Lead-Free Futures

Poisoning Sources

Comprehensive Source Assessment and Alternatives, Compliance to Lead-Free Standards

Poisoning Migration / Pathways

Awareness Raising, Capacity Building especially among environment and health front liners; general public on Mitigation Measures

Population at Risk

BLL Screening,
"Early Detection, Early Intervention"

Thank you

Larah Ortega – Ibañez

Country Director, Pure Earth Philippines

larah@pureearth.org

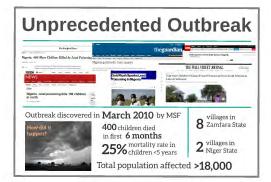
www.pureearth.org

Zamfara, Nigeria Lead Poisoning Response

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation

Outbreak discovery and initial investigations

Anka and Bukkuyuym Local Government Areas

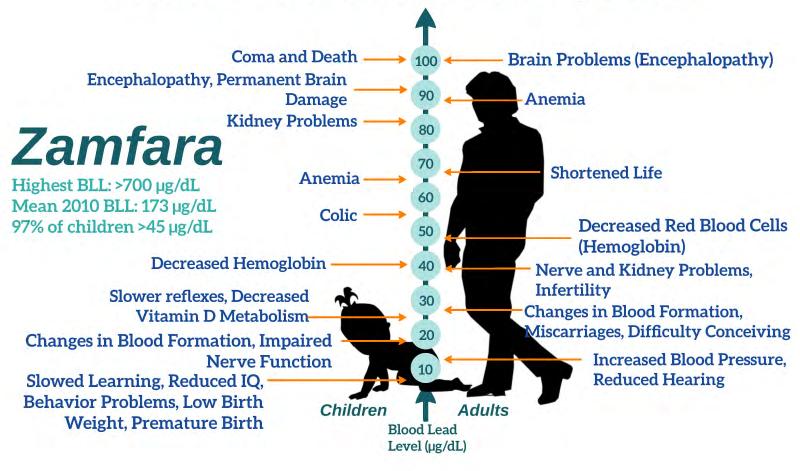

- · Remote, rural locations
- · Villages without cell signal, electricity
- · Many roads impassible during rainy season
- · Impacted villages 1-4 hours from nearest town with basic infrastructure

March-May 2010

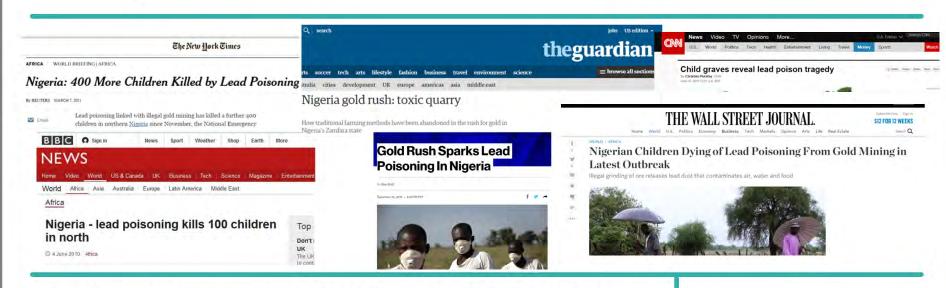
- Rural health workers began seeing strange, severe symptoms in young children (<5 years)
- Doctors Without Borders (MSF) outbreak surveillance teams contacted
- · MSF investigated
- Children did not respond to treatment for malaria, menengitis, etc.
- Local leaders suspected relationship between artisanal mining and outbreak
- MSF sent blood samples to Europe for analysis
- Exceptionally high blood lead levels (BLLs) reported
- State authorities, US CDC, WHO, TIFO engaged in investigation

Anka and Bukkuyuym Local Government Areas

- · Remote, rural locations
- · Villages without cell signal, electricity
- · Many roads impassible during rainy season
- Impacted villages 1-4 hours from nearest town with basic infrastructure


March-May 2010

- Rural health workers began seeing strange, severe symptoms in young children (<5 years)
- Doctors Without Borders (MSF) outbreak surveillance teams contacted
- · MSF investigated
- Children did not respond to treatment for malaria, menengitis, etc.
- Local leaders suspected relationship between artisanal mining and outbreak
- MSF sent blood samples to Europe for analysis
- Exceptionally high blood lead levels (BLLs) reported
- State authorities, US CDC, WHO, TIFO engaged in investigation



Blood Lead Levels

Health Effects of Lead Exposure

Unprecedented Outbreak

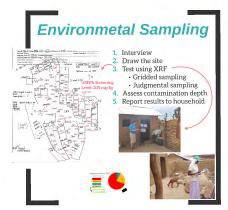
Outbreak discovered in March 2010 by MSF

400 children died in first 6 months

25% mortality rate in children <5 years

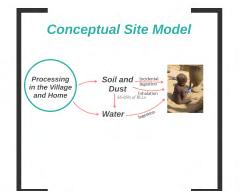
Villages in Zamfara State

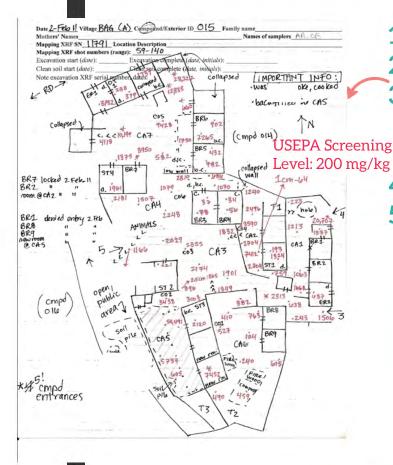
2 villages in Niger State

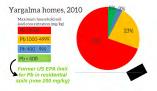

Total population affected >18,000

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation

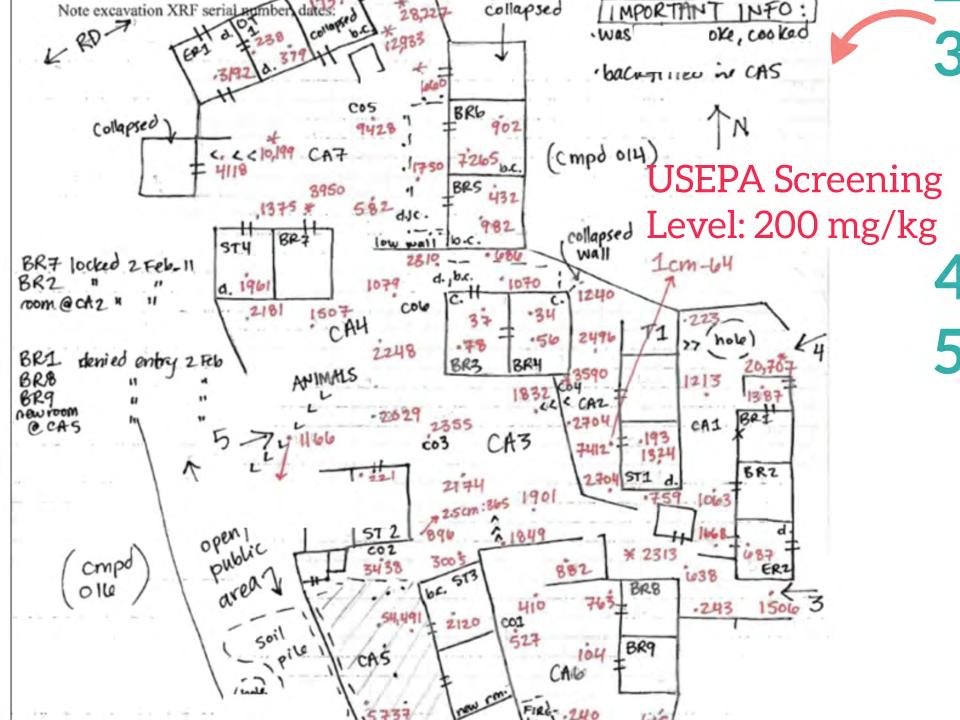


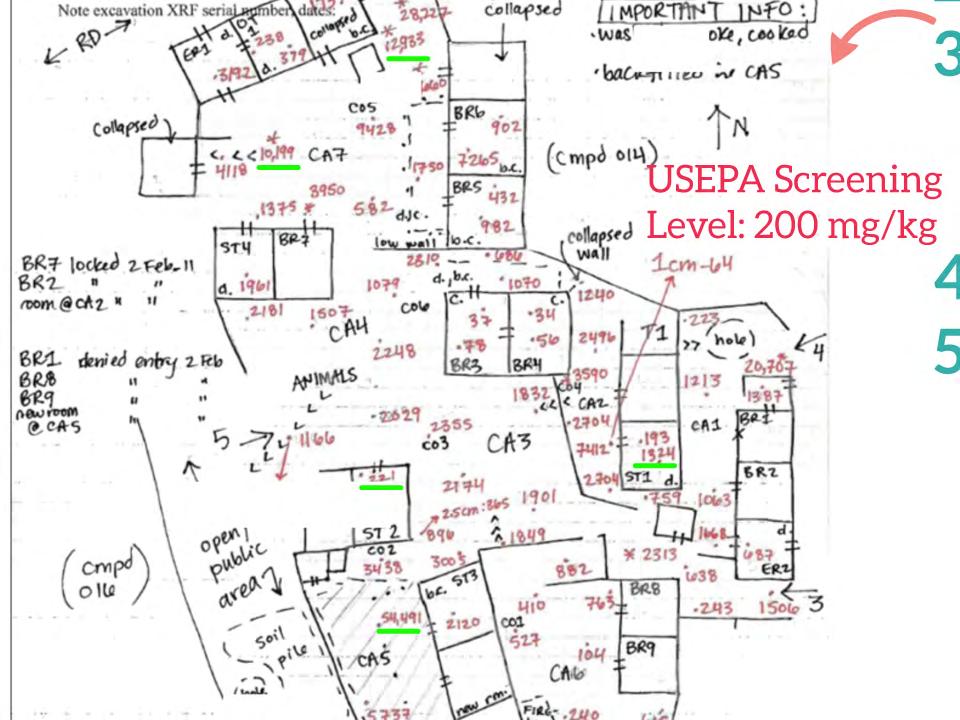

Assessing Exposure and Risk





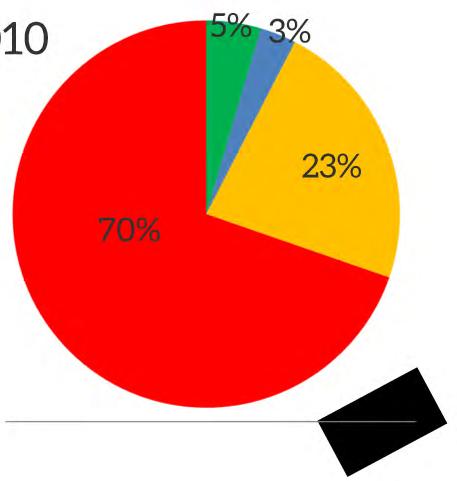
Environmetal Sampling




- 1. Interview
- 2. Draw the site
 - Test using XRF
 - Gridded sampling
 - Judgmental sampling
- 4. Assess contamination depth
- 5. Report results to household

Yargalma homes, 2010

Maximum household soil lead concentration (mg/kg)

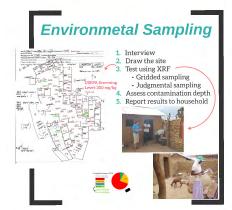

Pb >5000

Pb 1000-4999

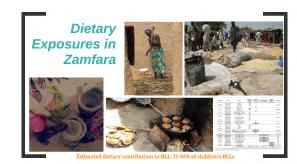
Pb 400 - 999

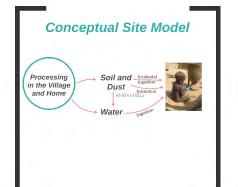
Pb < 400

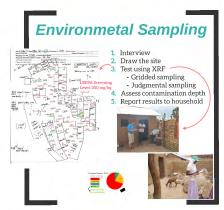
Former US EPA limit for Pb in residential soils (now 200 mg/kg)

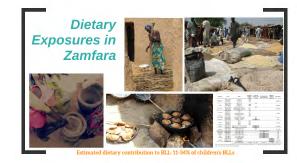


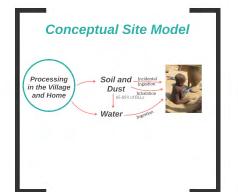
Gold Mining and Processing



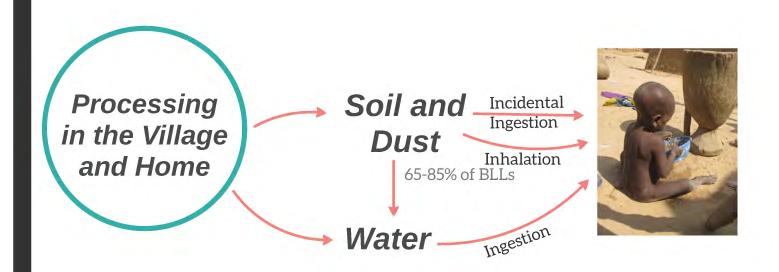

Assessing Exposure and Risk

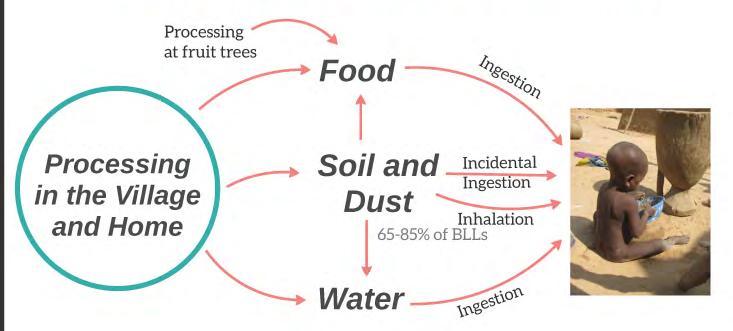





Assessing Exposure and Risk

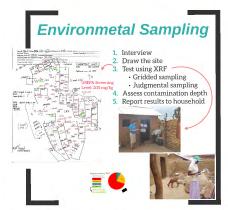
Dietary Exposures in Zamfara



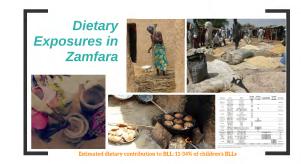

food type	source	Notes	harvested, thrashed, stored	processed (ready to cook or eat)	dried vegetables, herbs, and spices	traditional medicines and herbs	mean (stdev)	
	Bagega village	whole grain	0.93					
guinea corn	Bagega farm	whole grain	0.41				0.86 (077)	
(sorghum)	Anka market	whole grain	<0.05				0.00 (011)	
	Bagega village	dried, milled		2.06				
	Bagega farm	whole grain	< 0.05					
millet	Anka market	whole grain	0.53				0.41 (0.27)	
	Bagega village	ground, ready to cook		0.66				
maize (corn)	Bagega farm	whole grain, dried kernels	0.27				0.20 (0.08)	
meize (com)	Anka market	whole grain, dried kernels	0.12				0.20 (0.08)	
local rice	Bagega market	whole grain	0.73					
	Bagega farm	Hulled	Hulled <0.05					
	Bagega farm	whole grain, with hulls	0.2				0.30 (0.26)	
	Anka market	whole grain, with hulls 0.44						
white rice	Anka market	whole grain	0.09					
	Bagega bakery	dried 3 days, pulverized		0.31			A 50 00 000	
bread (white)	Bagega bakery	dried 3 days, pulverized		0.92			0.52 (0.29)	
wheat flour	Gusau market	sifted wheat flour		0.32			0.32	
	Bagega village	Whole	0.24					
cowpea	Bagega farm	Whole	0.39					
	Anka market	Whole	0.36				0.27 (0.12)	
tapery bean	Anka market	Whole	0.081					
dadawa	Bagega market	boiled, pounded, dried, ready to eat		3.41				
0000W0	Anka market	boiled, pounded, dried, ready to eat		0.44			1.95 (1.49)	
	Bagega village	pounded, ready to eat		0.92				
peanuts	Anka market	paste ready to eat		0.1			0.51 (0.41)	
baobab leaves	Bagega market	dried, ready to cook			146		146	
tomatoes	Bagega market	dried, ready to cook			0.3		0.3	
ginger root	Anka market	dried, ready to cook			1.86		1.86	
chilles	Anka market	dried, pulverized, ready to cook			0.62		0.62	
okra	Anka market	dried, ready to cook			0.18		0.18	
tamarind	Anka market	pods, ready to cook/eat			0.48		0.48	
medicine	Bagega market	local medicine				0.69		
	Bagega market	local medicine				0.79	1.40 (0.93)	
	Bagega market	local medicine				2.72	- 3 11113	
	A SHARES THE SACE	overall means (stdey)	0.32 (0.29)	0.85 (0.64)	24.91 (54.16)	0.74 (0.93)	0.66 (0.77)2	

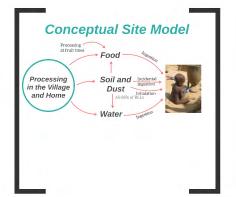
Estimated dietary contribution to BLL: 11-34% of children's BLLs

Conceptual Site Model



Conceptual Site Model




Assessing Exposure and Risk

Environmental Health Intervention

Interdisciplinary Response

MSF provides medical treatment (heavy metal chelation or "succimer")

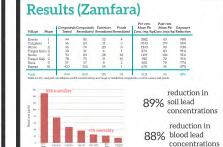
http://www.doctorswithoutborders.org/

http://www.doctorswithoutborders.org/

TIFO advises government on implementing environmental remediation

 Implement emergency environmental remediation to abate exposures;

 Establish local capacity to prevent future disasters


Environmental Remediation

- Modification of US (Superfund) hazardous waste removal protocols
- Progressing from an emergency response to comprehensive cleanup funded and accomplished by the Nigerian government.

Disposal

Objectives of Remediation

- Implement emergency environmental remediation to abate exposures;
- Facilitate chelation treatment of children ≤ 5 years old;
- Establish local capacity to prevent future disasters

Environmental Remediation

- Modification of US (Superfund) hazardous waste removal protocols to local resources and culture
- Progressing from an emergency response to comprehensive cleanup funded and accomplished by the Nigerian government.

Excavation

Disposal

Results (Zamfara)

Village	Phase	Compound Tested	ls Compounds Remediated		Ponds l Remediated	Pre-rem. Mean Pb Conc. (mg/kg	Post-rem. Mean Pb)Conc. (mg/k,	Exposure g)Reduction
Dareta	I	94	85	13	4	3582	83	98%
Yargalma	I	66	63	11	3	4143	179	96%
Abare	II	96	74	20	0	1343	90	93%
Tungar Gur	u II	38	31	6	1	874	83	91%
Sunke	II	93	83	38	10	1119	106	91%
Tungar Daj	i II	78	75	31	10	780	72	91%
Duza	II	57	57	8	2	300	70	77%
Bagega	III	423	352	54	1	670	90	87%
Total		944	820	181	31	3111	94	89%

Table 2.1. Pre- and post-remediation soil Pb concentrations and range of residential compounds, common areas, and ponds.

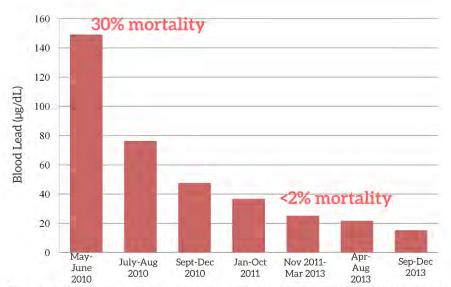


Figure 2.1. Arithmetic mean blood lead levels (µg/dL) for initial draw (prior to chelation) for 0-5-year-old children (MSF 2014).

reduction in 89% soil lead concentrations

reduction in 88% blood lead concentrations

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation

Remedial Effectiveness Eval

Zamfara Outbreak Discovered Emirate orders cessation of Phase III Remediation: residential ore processing Bagega Phase I Remediation: 2011 REE (Abare, Dareta, Yargalma) Niger Outbreak Discovered Dareta, Yargalma Partial Bagega Remediation 2010 REE (Dareta) (10 homes) 2016 REE (Abare, Dareta) 2012 REE (Bagega) Phase II Remediation: Niger State Abare, Duza, Sunke, Remediation T. daji, T. guru

Methods

- "Biased" homes with elevated BLLs
- · Random homes

· In situ XRF testing

· Collect samples to compare in situ XRF to ex situ sieved ICP-MS

· Child's daily activities

behavior

- · Where child eats/sleeps/plays
- · Places visited during the day · Observations of child's

Community Discussions

Soil Results

Significant recontamination in villages with increasing

Abare reached preremediation soil lead levels

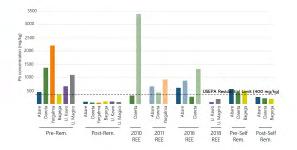
Objectives

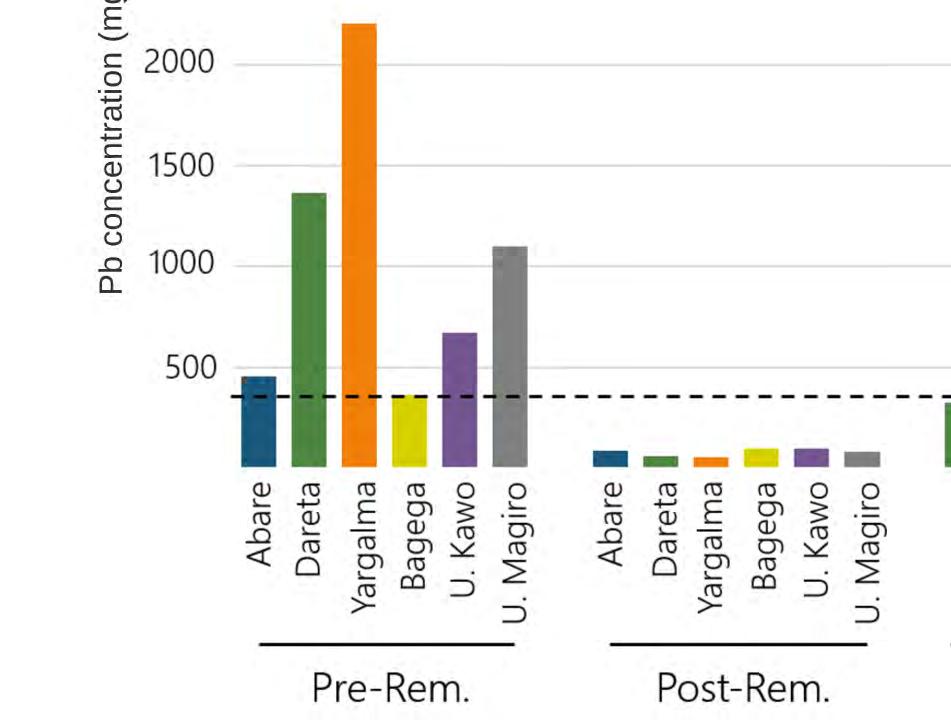
- 1. Assess the efficacy of remediation in reducing BLLs.
- 2. Assess the degree of any recontamination.
- 3. Assess the effectiveness of institutional controls in sustaining the remedy.
- 4. Assess the capacity of Nigerian governments to prevent and respond to future crises.

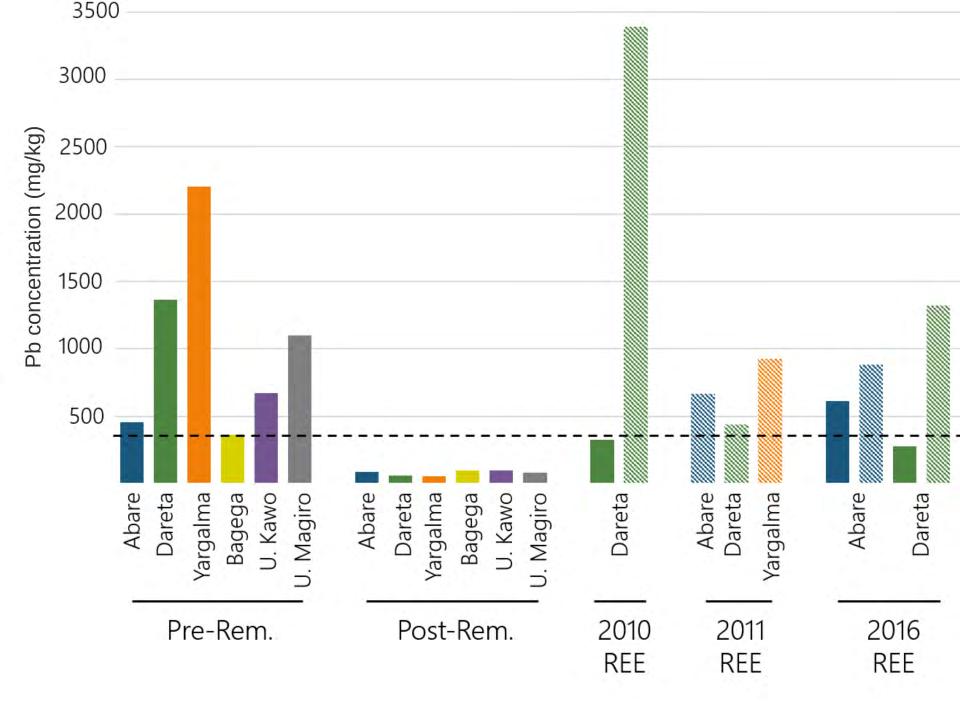
Soil Results

	Pre-Remediation in situ				Pre-Remediation Converted				
Village	N	Mean	std	Geomean	gstd	Mean	std	Geomean	gstd
Dareta	91	3490	4421	1366	4.9	9773	12379	3826	4.9
Yargalma	66	4143	4786	2206	3.5	11001	13400	6177	3.5
Phase I	157	3765	4574	1671	4.3	10541	12808	4679	4.3
Abare	96	1245	2724	457	4.1	3761	7628	1280	4.1
Duza	42	300	367	179	2.8	841	1027	501	2.8
Sunke	82	861	879	547	2.7	2410	2460	1531	2.7
Tungar daji	75	780	848	522	2.4	2183	2374	1461	2.4
Tungar guru	38	1118	2087	486	3.9	3129	5843	1360	3.9
Phase II	333	940	1756	440	3.3	2633	4917	1233	3.3
Bagega / Phase III	423	831	1574	360	3.3	2328	4407	1008	3.3
		Post-Ex	cavatio	n XRF in situ		Post-	Excavatio	n XRF Convert	ed
Village	N	Mean	std	Geomean	gstd	Mean	std	Geomean	Gstd
Dareta	12	120	43	111	1.5	336	121	312	1.5
Yargalma	20	101	64	148	1.6	451	179	414	1.6
Phase I	32	146	60	133	1.6	408	167	372	1.6
Abare	50	110	30	114	1.4	221	85	318	1.4
Duza	26	116	44	106	1.6	323	124	296	1.6
Sunke	68	163	120	130	2.0	457	335	365	2.0
Tungar daji	59	125	59	115	1.5	349	166	321	1.5
Tungar guru	26	209	103	190	1.5	584	287	532	1.5
Phase II	229	143	87	125	1.7	401	244	349	1.7
Bagega / Phase III	266	156	132	127	1.9	438	371	356	1.9
	Post-Remediation Clean Soil in situ				Post-Remediation (Clean Soil) Converte				
Village	N	Mean	std	Geomean	gstd	Mean	std	Geomean	Gstd
Dareta	91	69	42	58	1.9	165	130	111	2.7
Yargalma	66	04	39	56	1.7	144	119	108	2.2
Phase I	157	67	41	57	1.8	156	126	110	2.5
Abare	96	96	42	86	1.7	252	128	211	2.0
Duza	42	95	33	88	1.6	261	90	241	1.6
Sunke	82	107	37	100	1.5	283	110	253	1.7
Tungar daji	75	112	34	106	1.5	296	101	272	1.6
Tungar guru	38	108	42	97	1.7	284	119	252	1.7
Phase II	333	104	38	95	1.6	275	113	242	1.8
Bagega / Phase III	423	103	33	97	1.4	277	97	257	1.5

Table 4.5. Pre-remediation, post-excavation, and post-remediation (clean soil cover) statistics for in situ PXRF results and the conversion to analogous ex situ sieved (-80 mesh) ICP-MS results (mg/kg).

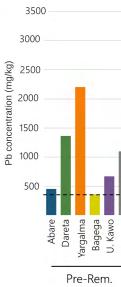





Significant recontamination in villages with increasing BLLs

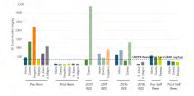
Abare reached preremediation soil lead levels

Dareta had ubiquitous, lower-level recontamination


2.5 1.6 1.7 1.6 1.7 1.8 1.5

an soil cover) itu sieved

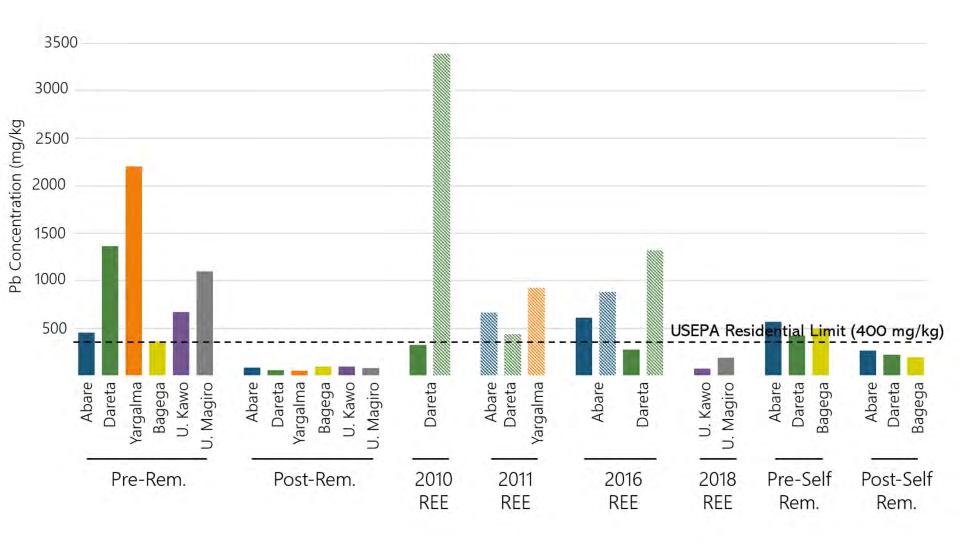
Institutional Controls Program


- Administrative & legal controls to minimize exposures & protect remediation
- Maintained in perpetuity
- Coordinated medical/environmental/ occupational health/ community effort
- Based on scientific principals/ high-quality data
- Developed and/or adapted locally

ICP in Nigeria

- Health promotion, occupational health & safety training, environmental monitoring, biomonitoring
- appropriate

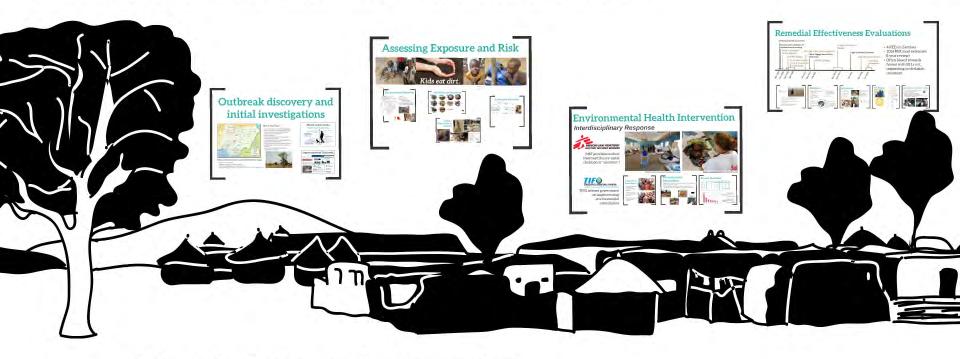
 Village councils
 - Village councils
 Long-term maintenance includes
 - Self-reporting
 Institutional surveillance
 - Self-remediation



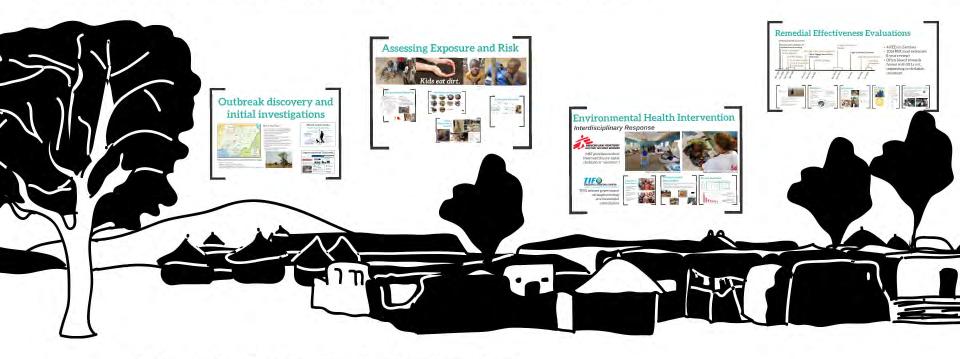
ICP in Nigeria

- Health promotion, occupational health & safety training, environmental monitoring, biomonitoring
- Culturally & economically appropriate
- Village councils
- Long-term maintenance includes
 - Self-reporting
 - Institutional surveillance
 - Self-remediation

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation



Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation


1. Engage local and regional leaders from day 0.

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation

- 1. Engage local and regional leaders from day 0.
- 2. Tackle major sources of exposure, then start investigating and addressing secondary sources.

Simba Tirima, PhD, Country Representative for Nigeria, Médecins Sans Frontières Casey Bartrem, PhD, Executive Director, TerraGraphics International Foundation

- 1. Engage local and regional leaders from day 0.
- 2. Tackle major sources of exposure, then start investigating and addressing secondary sources.
- 3. Always be working towards development of an intervention that removes the exposure source.